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Abstract: Single-particle electroproduction is discussed in the framework of the covariant patton 
model. It is found that the discussion of the process is model dependent, but that two 
contributions are likely to occur. One corresponds to a term found by Weis in a different 
discussion, and the other resembles a parton-model term suggested by Roy. It is possible 
that both terms have similar phenomenological consequences, with the amplitude falling 
off in Bjorken limit at a rate equal to the fall-off of form factors at large momentum 
transfer, The relation of these terms to fixed poles and to light-cone limits is clarified. 

1. INTRODUCTION 

Inclusive deep inelastic electroproduction has been the subject of intensive theor- 
etical study. Although the discussion may be phrased in a variety of ways, a large 
number of authors [1 -4 ]  * agree that the dominant  contribution arises from dia- 
grams like that of fig. 1. The non-perturbative parton model that we have developed 
[1] provides a general and covariant language for the discussion, which is also as 
close as possible to conventional field theory. The electromagnetic current is construc 
ted from one or more parton fields ~, as a sum of terms proportional to 

~ (1) 

The choice of a spin ½ field is~motivated by the experimental smallness of the ratio 
of the longitudinal and transverse cross sections. The upper bubble in fig. 1 then re- 
presents the complete parton propagator and the lower bubble is the parton-hadron 
scattering amplitude. The latter amplitude is non-amputated, that is it effectively in- 
cludes a propagator in each parton leg. An important dynamical postulate of the 
theory is that this amplitude goes to zero sufficiently rapidly as the squared momen- 
ta in the parton legs become large. Without this softness requirement, Bjorken sca~ing 

* The papers of ref. [4 ] show how the light-cone approach to deep inelastic scaling corresponds 
tofig. 1. 
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Fig. 1. The dominant type of diagram for 
deep inelastic electroproduction. The 
broken lines represent partons; the bar 
denotes a sum over intermediate states. 

s 

Fig. 2. The form factor in the parton 
model. 

would be broken by  logarithmic factors. The rate of decrease must be such that the 
form factor of  fig. 2 is not  logarithmically divergent, but  otherwise none of  the con- 
sequences deduced for inclusive deep inelastic electroproduction depend on the pre- 
cise rate of  decrease. This is satisfactory, since the determination of  the off-shell be- 
haviour of the pat ton field would require a specific model,  such as would in principle 
be provided by  postulating a Lagrangian density for its hadronic interactions, and we 
can scarcely hope to know what that should be. 

However, the asymptotic  behaviour of  the amplitudes for exclusive electroproduc- 
tion 

e + h - + e + A + B  , (2) 

where h, A and B are hadrons,  does prove to depend on the precise rate of decrease 
of  the parton-hadron amplitudes for large values of  the square of  the parton mo- 
menta. Thus experimental  data for these processes (2) will give a rather more de- 
tailed insight into the dynamics of  the theory than do the inclusive data. In principle, 
our present theoretical understanding would allow almost any results to emerge, the 
only real constraint being that  the cross section for each process (2) is less than the 
inclusive cross section. For this reason our present work contains a large element of  
speculation. 

We are concerned with an ampli tude 

7(0) + h(p)  -+ A(PA) + B(PB) , (3) 

for large values of  the energy u = p'q and of the virtual photon mass variable q2, 
such that 

- 2 u  
co - , ( 4 )  

q2 
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remains finite. Two recent papers [5,6] on this subject have reached different con- 
clusions. We find that there are likely to be two contributions.  One is similar to that 
obtained by Weis [5], who did not  use a parton approach. The other corresponds to 
a mechanism considered by  Roy [6], though, despite his use of  a parton model  
(phrased in a manner different from our own), we obtain a somewhat different re- 
sult. 

2. PARTON-MODEL CALCULATIONS 

The simplest type of  contr ibut ion to (3) arises in the case where the par ton pro- 
pagator has a pole corresponding to one of  the final-state hadrons, as shown in fig. 
3. In these circumstances the exclusive process (3) contributes a non-zero fraction 
to the inclusive cross section. However, there is a reason [7] to think that  the pat ton 
field ~ carries quark quantum numbers. In the absence of  quarks as particles the 
propagator will have no pole, and fig. 3 will not  occur. (The calculation [1] of  the 
inclusive cross section does not assume the existence of  a pole in the parton propa- 
gator.) In this case the leading contr ibution must come from the connected diagram, 
fig. 4. 

In this figure, T is the connected, non-amputated two-patton three-hadron ampli- 
tude. It depends on seven independent  variables, of  which q2, s = (PA + PB) 2 and 
l = (p - pB) 2 are fixed and the remaining four vary, corresponding to the four-dimen- 
sional integration over the pa t ton  loop momentum k. In this discussion, we ignore all 
spins. 

We may analyse the asymptot ic  behaviour of  the diagram with techniques pre- 
viously used in our pat ton-model  calculations [1,8]. There are two alternative 
methods,  one using Sudakov variables [1] and the other involving Fourier  trans- 
forms [8]. We give an account of  the first method in the appendix,  since it gives 
more insight into what is going on, though in the present problem it is easier to ma- 
ke the second method rigorous. 

It is found in the appendix that the squared momenta  in both the par ton lines 
~annot be kept  finite as q2 ~ ,,o, and the leading contr ibution arises from that part  

- < > - - ,  

t t  
Fig. 3, A pa t ton  propagator  pole contribu- Fig. 4. Connected contr ibut ion to the ex- 

tion to the exclusive process, clusive process. 
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of the region of  integration where one squared momentum is infinite and the other 
finite. The asymptotic behaviour of  T under such conditions is not fixed by any 
familiar principles; in particular it need not be associated with Regge exchange. 
ttowever, in order to have a definite model, we suppose that Regge exchange is ap- 
propriate, in just the same way as when the squared momenta in the parton lines are 
finite, and that account of  the large squared momentum is taken by using an assumed 
asymptotic form for the reggeon coupling function concerne-d. Thus when k 2 is large, 
the coupling function/3(k 2, (PA k) 2) at the upper vertex of fig. 5a is taken to have 
the form (k2) -v l  , and when q k) 2 is large the two-reggeon/parton coupling [9]* 
corresponding to the centre vertex of  fig. 5b is taken to be ((q k)2) -72 .  

It turns out that there are four contributions. In fig. 5a, k 2 is infinite and 
(p + q - k) 2 is finite; in fig. 5b, (q - k) 2 is infinite and so is (p + q - k) 2. The other 
two terms are obtained by interchanging the kinematic roles of the partons in fig. 5. 
Notice that if the patton field carries quark quantum numbers, then so does the 
reggeon in fig. 5a and the upper of the two reggeons in fig. 5b. Fig. 5a is similar to 
that considered by Roy [6], while fig. 5b resembles the contribution discussed by 
Weis [5]. 

As outlined in the appendix, fig. 5a results in a term 

S Otl(O)- ' ) ' l  (log s)'rl--2f(co, t) , (5) 

where C~l(0 ) is the reggeon intercept. It is interesting to notice that this is valid even 
for finite q2: there is a fixed pole in the complex angular momentum plane, with 
residue independent o f q  2. From fig. 5b we obtain 

s ~{t)+{q{O)-~'2 (log s) 72 {~{t)-2 jT(co, t) (6) 

where c~(t) is the trajectory of  the lower reggeon. This term does not survive in this 
form for finite q2. 

':t. k I~,, ~--..~,,,~--(~) , 

cL-k ~,, < /  (o.) 

~A.~7 ~- - r - - ~  
~t_k~ ' ~  '-" 

2 
Fig. 5. Two diagrams giving the contributions to exclusive electroproduction in the Bjorken 

limit. Wavy lines denote reggeons. In (a) k 2 is large; in (b), (q - k) 2 is large. 

* The variable r~, associated with the Toiler angle, is infinite in the present application. 



P. V. Landshoff, J.C. Polkinghorne, Single-particle electroproduction 283 

The results (5) and (6) may be expressed in terms of  elastic form factors, With 
the current (1), the elastic form factor corresponds to fig. 2. At large momentum 
transfer, the dominant contribution arises [1 ] from large values of  the squared mo- 
menta of  the partons. Again there is no reason to suppose that under such condi- 
tions the parton/hadron amplitude A must be dominated by reggeon exchange, but 
if we make such an assm~pfion for T in fig. 4 it is natural also to make it for A. That 
is, we use fig. 6, with two coupling functions 13 identical with the one in fig. 5a. Then 
at large q2 the asymptotic behaviour of  the elastic form factor FA(q 2) of  hadron A is 
found to be * 

(q2)a, (0)-~x (log q2)Vl-1 (7) 

Thus we may write (5) in the form 

fA{q2) f ( ~ ,  O/log q2. (8) 

This is the similar to the result of  Roy [6], except that he has [FAFB]'~ in place of  

FA. 
In order to deal similarly with (6), it is necessary to introduce a further assump- 

tion, as proposed by Weis [5]. This is that the numbers 71 and 3'2 depend on the regge 
trajectories attached to the vertices with which they are associated, in the way sug- 
gested by field-theory models [11 ]. This dependence says that 

"/ = 2;c~ i + ~ , ( 9 )  

where the sum is taken over all the trajectories at the vertex and Tis  the value of  y 
when all these trajectories are at zero. Then (6) may be written 

F(1)(q 2) f ' ( ~ ,  t) , (10) 

where F (1) is one of  the terms present in the asymptotic behaviour of  the excitation OA 

/ \ 
I i  \ \ 

\ 
/ \ 

Fig. 6. A model for a vertex part contribution. 

* This calculation was first performed by Cardy [10]. 
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form factor connecting the spin zero particle on the lower trajectory of  fig. 5b to the 
particle A. In a model for the form factor of the type of  fig. 2 this term corresponds 
to the behaviour associated with the large momentum in the asymptotic limit being 
in the patton leg nearer the spin-zero particle. There is a second term in the asymp- 
totic behaviour of  the form factor corresponding to the large momentum being in 
the parton leg nearer A. To within logarithmic factors this second term gives the 
same asymptotic behaviour as that associated with FA(q2 ). It is therefore possible to 
find models in which the two terms (8) and (10) combine to give a total asymptotic 
behaviour of  the form 

FOA(q 2) f(co, t) , (11) 

where FOA is the complete excitation form factor, as suggested by Weis [5]. An ex- 
ample of  such a model is provided by the Feynman integral models briefly discussed 
in the next section. 

Finally, we note that we have not so far explicitly considered the dependence of  
the amplitude on the photon polarization ~ at the photon-parton vertex. The calcU- 
lations of  the appendix readily show that gauge invariance is satisfied to the leading 
order in log u. 

3. DISCUSSION 

Our arguments have been model dependent in a way that is not true of  the dis- 
cussions of  inclusive electroproduction. In particular there is no compelling reason 
to accept the extensive use of  Regge models in regions where both energy and 
masses are large so that the effective variable cos0 t ~ s/q 2 is not asymptotic. Never- 
theless we think it not unreasonable to hope that the results expressed in the form 
of eq. (8) and (10), connecting exclusive electroproduction with form factor behav- 
lout, might prove to be reliable (though we would not attach any significance to the 
logarithmic factors). This hope is strengthened by considerations based on a 
Feynman diagram model given below. 

If  there is a universal rate of fall-off of  form factors then the Weis and Roy type 
terms would coincide in their phenomenological consequences. There is, however, an 
interesting difference in status between the two terms which is probably most readily 
seen in diagrammatic terms [12]. 

If one considers by the standard methods [13] the asymptotic behaviour of  a 
Fe~nman diagram like fig. 7 in the limit (4) one sees that there are end point contri- 
butions corresponding to the two types of  d-lines indicated by the broken lines of  
figure. One type of  d-line (the upper in the figure) joins the current vertex to the 
vertex at which particle A is emitted; the second type of  d-line (the lower in the fig- 
ure) joins the current vertex to another point. The rule of interpretation of  a-space 
methods into momentum space language is that the sets of  lines contracted in the 



P. V. Landshoff, J, C. Polkinghorne, Single-particle electroproduction 285 

Fig. 7. A Feynman diagram. 

one method correspond to those lines which carry the large momenta in the other. 
Thus the upper d-line corresponds to the Roy term, the lower to the Weis term * 
The difference in status which results from this observation is that the Roy term cor- 
responds to the contribution which would dominate in a light cone limit whilst the 
Weis term does not. The possible presence of  both terms confirms that the process 
[3] is not  in general light cone dominated. 

To understand this observation one must recall that a light cone dominated pro- 
cess [4] results from a Q+ ~ oo limit, where Q is a momentum fed into and out of  
the process. If  this momentum Q entered with the photon and left with particle A 
this would require not only that q2 and u tended to infinity but also m 2. It is the 
fixed value o f m  2 that prevents light cone dominance. However it is easy to [13] see 

that in the light cone limit it is only d-lines of-the upper or Roy type which would 
count [31 . 

One can immediately confirm in these diagram models relations of  the form of 
eq. (8) and (10). Finally it is easy to see from the diagrams that the Roy terms are 
related to fixed pole contributions in the Regge limit for electroproduction [14]. We 
had noted this already in sect. 2, and it is another illustration of  the intimate con- 
nection between q2 independent fixed Regge poles and light cone limits [8]. 

This fixed pole has a different character from the polynomial-residue fixed poles 
of  Compton scattering previously discussed [8]. There is no obvious general reason 
why its position given by (5), J = ~ (0 )  -- ")'1' should correspond to an integer, though 
it will certainly be negative. In general similar poles would be expected in Compton 
amplitudes, for their absence would require dynamically intricate conditions to be 
satisfied. On the other hand, in very simple perturbation theory models [15] the 
pole we are considering occurs at a negative integer and its residue is proportional to 
the matrix element of  the commutator  of  the electromagnetic current with the 
source of  the A.particle field. The vanishing of  this commutator for neutral partic- 
les would make it possible that in this case only polynomial-residue fixed poles were 
present in Compton amplitudes. 

• The absence of scalings over the rungs of  the ladders shows the adventitious character of the 
Regge analysis in sect. 2. 
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APPENDIX 

Write the final state momenta  PA and PB in the form 

Pi = x i P  + Y i  q + Ki ' i = A , B  , (A.1) 

where the'•i are orthogonal to both  p and q, and so are spacelike, K 2 ~< 0. The mass- 
shell conditions for these momenta ,  together with energy-momentum conservation 
and the requirement that 

t = (p - pB )2 , 

remains finite as u -+ ¢", imply that 

x A = co-1 + YA/2 u , YA = 1 +~A/2U , 

(A.2) 
XB = l - - c o - l - - x A / 2 U ,  yB = - -YA /2U , 

where XA and YA are non-infinite. Similarly write the integration variable k in fig. 4 
as 

k = x p + y q + •  . (A.3) 

Then 

k 2 = 2 p y ( x - y c o  -1) + x2M 2+K2 , 

( k - q ) 2  = 2v(y-  1) ( x -Y- leo )  + x2M2 + ~2 
(A.4) 

By hypothesis,  the amplitude T goes to zero fairly rapidly as the variables (A.4) be- 
come large, so that one at first sight expects the dominant  contribution as v -+ ~ to 
come from the part of  the integration region where both these variables are finite. 
This requires that 

x = y w  - 1  + 2 / 2 u  , y = 1 + . F / 2 u  (A.5) 

where ~ and .~ are non-infinite; alternatively, there is another solution where the kine 
matic roles of  k and (q - k) are interchanged. With (A.5), we find that the variable 
(p + q - k) 2 is non-infinite, though of course q2 and s = (PA + PB) 2 are large. Accor- 
ding to usual ideas, in this kinematic domain the amplitude T is dominated by the 
contribution from tile exchange of a single reggeon. Inserting this in fig. 4, we arrive 
at fig. (5a). However, when we make the change of variables (A.5) and take the 
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limit v -+ oo under the integral, we find that tha variable £ survives only in the expres- 
sion for k2: 

k 2 ~ .~ + M2¢.,o - 2  + t~ 2 (A.6) 

According to the usually-assumed analyticity properties of  T, the ~ingularities in k 2 
are all below the real axis; hence we may close the contour of  integration in the 
upper-half ~ plane and so obtain zero from this integration. That is, the region of  in- 
tegration where both variables (A.4) are finite does not after all give the leading 
asymptotic behaviour. However, as we explained in the text, the behaviour of  the 
amplitude T outside this region is very model dependent. 

In these circumstances, the best way to analyse the asymptotic behaviour of  fig. 4 
is the Fourier-transform method that we have used in a previous work [8]. However, 
here we continue with the development of  the Sudakov-variable approach, since al- 
though it is more difficult to make it rigorous, it offers more insight. The Fourier- 
transform method is found to lead to the same result. For definiteness, we consider 
the simple model where, even for large values of  the square of the parton momentum, 
the amplitude T is dominated by simple reggeon exchange in exactly the same way 
that the on-shell amplitude is. We take account of  the large mass of  the virtual parton 
by simply replacing the appropriate reggeon coupling function by a postulated 
asymptotic form of that function. 

Either 2 or y in (A.5) has to be large. Consider the case of  large £ first; Then 
(p + q - k) 2 is still nor>infinite, and fig. 5a is still appropriate. Because k 2 is now 
large, we replace the reggeon coupling function/3(k2,(pA - k) 2) at the upper vertex 
by its asymptotic form, which we suopose to be (k2)-71 with ~1 constant. Another 
factor in the integrand is sal((PA-k)7). We suppose that the Regge trajectory a 1 is 
linear, so that this is 

C~l(O) eailogs [Yy/2u+ x2/4u2 +~a] 
s (A.7) 

From this we determine just how large the variable 2 is to be. Make what is essen- 
tially a Wick rotation, that is rotate the contour of  the 2 integration so that it runs 
parallel to the imaginary axis. Then ~ cannot be larger than O(2v/low), for other- 
wise the exponential would oscillate rapidly. So we make the change of varible 

2p 
= m _ 7  ~ , ( A . 8 )  

logu 

and take the limit under the integral. Then (A.7) becomes s al(O) e ~2 a~ l°gsso that (re- 
member that K 2 ~ 0) the K-integration gives a factor that is O(s%(°)/log s).The fac- 
tor (k2) - 'r,  contributes O((log s)V,), and there is a further factor (log s) 1 from the 
Jacobian of  the transformation of  integration d4k to d~dy d2K. Thus we have the 
result (5). 
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I f  instead fi  is large, (p  + q - k) 2 is now large, and so we must  consider  the ex- 
change o f  another  reggeon, fig. 5b. Now k 2 is f inite,  bu t  (q - k) 2 is large, so we re- 

place the two- reggeon/par ton  coupling [9] corresponding to the centre ver tex  by 

its asympto t ic  form,  which we suppose to be ((q - k)2)- ' r~ ,  wi th  3'2 constant .  The 

factors associated wi th  the reggeons are 

- k)~) k)2)  a(t) (A.9) (q2)  a~((pA ((p + q - 

I f  we suppose that  a 1 is l inear,  an analysis similar to that  above leads to the result 

(6). 
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